|
| bool | test_AE.TEST_TRAINED = True |
| |
| int | test_AE.seed = 3 |
| |
| string | test_AE.name = 'Billiard_AE' |
| |
| | test_AE.device = torch.device('cpu') |
| |
| string | test_AE.load_path_AES = '/home/giuseppe/src/taxons/experiments/{}_Surprise/{}' |
| |
| string | test_AE.load_path_AEN = '/home/giuseppe/src/taxons/experiments/{}_Novelty/{}' |
| |
| string | test_AE.load_path_Mixed = '/home/giuseppe/src/taxons/experiments/{}_Mixed/{}' |
| |
| string | test_AE.load_path_NT = '/home/giuseppe/src/taxons/experiments/{}_NoTrain/{}' |
| |
| string | test_AE.env_tag = "Billiard-v0" |
| |
| int | test_AE.number_of_samples = 10 |
| |
| | test_AE.AEN = Tester(load_path_AEN, device) |
| |
| | test_AE.AES = Tester(load_path_AES, device) |
| |
| | test_AE.Mixed = Tester(load_path_Mixed, device) |
| |
| | test_AE.NT = Tester(load_path_NT, device) |
| |
| list | test_AE.x_test = [] |
| |
| | test_AE.env = gym.make(env_tag) |
| |
| | test_AE.RANDOM_BALL_INIT_POSE |
| |
| | test_AE.RANDOM_ARM_INIT_POSE |
| |
| | test_AE.CoM = np.array([env.env.data.qpos[:2]]) |
| |
| | test_AE.tmp = env.render(mode='rgb_array') |
| |
| | test_AE.images_test = torch.Tensor(x_test).permute(0, 3, 1, 2).to(device) |
| |
| | test_AE.fig |
| |
| | test_AE.ax |
| |
| | test_AE.N_loss |
| |
| | test_AE.N_f |
| |
| | test_AE.N_y = N_y.permute(0, 2, 3, 1)[0] |
| |
| | test_AE.S_loss |
| |
| | test_AE.S_f |
| |
| | test_AE.S_y = S_y.permute(0, 2, 3, 1)[0] |
| |
| | test_AE.M_loss |
| |
| | test_AE.M_f |
| |
| | test_AE.M_y = M_y.permute(0, 2, 3, 1)[0] |
| |
| | test_AE.NT_loss |
| |
| | test_AE.NT_f |
| |
| | test_AE.NT_y = NT_y.permute(0, 2, 3, 1)[0] |
| |
| | test_AE.subs = AEN.selector.subsample(images_test[k:k+1]) |
| |
| | test_AE.img = np.array(N_y.cpu().data * 255) |
| |