TAXONS  0.1
Task Agnostic eXploration of Outcome spaces through Novelty and Surprise
test_AE.py File Reference

Classes

class  test_AE.Tester
 

Namespaces

 test_AE
 

Variables

bool test_AE.TEST_TRAINED = True
 
int test_AE.seed = 3
 
string test_AE.name = 'Billiard_AE'
 
 test_AE.device = torch.device('cpu')
 
string test_AE.load_path_AES = '/home/giuseppe/src/taxons/experiments/{}_Surprise/{}'
 
string test_AE.load_path_AEN = '/home/giuseppe/src/taxons/experiments/{}_Novelty/{}'
 
string test_AE.load_path_Mixed = '/home/giuseppe/src/taxons/experiments/{}_Mixed/{}'
 
string test_AE.load_path_NT = '/home/giuseppe/src/taxons/experiments/{}_NoTrain/{}'
 
string test_AE.env_tag = "Billiard-v0"
 
int test_AE.number_of_samples = 10
 
 test_AE.AEN = Tester(load_path_AEN, device)
 
 test_AE.AES = Tester(load_path_AES, device)
 
 test_AE.Mixed = Tester(load_path_Mixed, device)
 
 test_AE.NT = Tester(load_path_NT, device)
 
list test_AE.x_test = []
 
 test_AE.env = gym.make(env_tag)
 
 test_AE.RANDOM_BALL_INIT_POSE
 
 test_AE.RANDOM_ARM_INIT_POSE
 
 test_AE.CoM = np.array([env.env.data.qpos[:2]])
 
 test_AE.tmp = env.render(mode='rgb_array')
 
 test_AE.images_test = torch.Tensor(x_test).permute(0, 3, 1, 2).to(device)
 
 test_AE.fig
 
 test_AE.ax
 
 test_AE.N_loss
 
 test_AE.N_f
 
 test_AE.N_y = N_y.permute(0, 2, 3, 1)[0]
 
 test_AE.S_loss
 
 test_AE.S_f
 
 test_AE.S_y = S_y.permute(0, 2, 3, 1)[0]
 
 test_AE.M_loss
 
 test_AE.M_f
 
 test_AE.M_y = M_y.permute(0, 2, 3, 1)[0]
 
 test_AE.NT_loss
 
 test_AE.NT_f
 
 test_AE.NT_y = NT_y.permute(0, 2, 3, 1)[0]
 
 test_AE.subs = AEN.selector.subsample(images_test[k:k+1])
 
 test_AE.img = np.array(N_y.cpu().data * 255)