|
TAXONS
0.1
Task Agnostic eXploration of Outcome spaces through Novelty and Surprise
|
Classes | |
| class | test_control.Eval |
Namespaces | |
| test_control | |
Variables | |
| int | test_control.seed = 42 |
| string | test_control.load_path = '/home/giuseppe/src/taxons/experiments/Maze_AE_Mixed/{}' |
| test_control.params = parameters.Params() | |
| test_control.env = gym.make(params.env_tag) | |
| list | test_control.target_pose = [450, 500] |
| test_control.obs = env.reset(desired_ball_pose=target_pose) | |
| test_control.target_image = env.render(mode='rgb_array') | |
| test_control.qpos = np.zeros(15) | |
| test_control.qvel = np.zeros(14) | |
| test_control.pose = target_pose+env.initPos[-1:] | |
| test_control.p = fs.Posture(*pose) | |
| test_control.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| test_control.selector = ae.ConvAE(device=device, encoding_shape=params.feature_size) | |
| test_control.agent_type = agents.FFNeuralAgent | |
| test_control.pop = population.Population(agent=agent_type, pop_size=0, shapes=params.agent_shapes) | |
| bool | test_control.done = False |
| int | test_control.t = 0 |
| test_control.agent_input = t | |
| test_control.action = utils.action_formatting(params.env_tag, agent['agent'](agent_input)) | |
| test_control.reward | |
| test_control.info | |
| test_control.CoM = np.array([env.env.data.qpos[:2]]) | |
| test_control.state = env.render(mode='rgb_array') | |
| test_control.surprise | |
| test_control.bs_point = bs_point.flatten().cpu().data.numpy() | |
| test_control.y | |
| test_control.goal = torch.Tensor(np.ascontiguousarray(target_image)).permute(2, 0, 1).unsqueeze(0).to(device) | |
| test_control.reconstr | |
| test_control.bs_space = np.stack([a[0] for a in pop['features'].values]) | |
| test_control.diff = np.atleast_2d(bs_space - bs_point) | |
| test_control.dists = np.sqrt(np.sum(diff * diff, axis=1)) | |
| test_control.closest_agent = np.argmin(dists) | |
| test_control.selected = pop[closest_agent] | |
| list | test_control.images = [] |
| list | test_control.saved_balls_pose = [] |
| list | test_control.saved_joints_pose = [] |
| list | test_control.saved_robot_pose = [] |
| test_control.f_pose = CoM | |
| test_control.SHOW_ARM_IN_ARRAY | |
| test_control.point_pose | |
| test_control.final_distance = np.sqrt(np.sum((target_pose - f_pose) ** 2)) | |